Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Cell Death Dis ; 15(3): 209, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480704

RESUMO

Metabolic reprogramming, a hallmark of cancer, is closely associated with tumor development and progression. Changes in glycolysis play a crucial role in conferring radiation resistance to tumor cells. How radiation changes the glycolysis status of cancer cells is still unclear. Here we revealed the role of TAB182 in regulating glycolysis and lactate production in cellular response to ionizing radiation. Irradiation can significantly stimulate the production of TAB182 protein, and inhibiting TAB182 increases cellular radiosensitivity. Proteomic analysis indicated that TAB182 influences several vital biological processes, including multiple metabolic pathways. Knockdown of TAB182 results in decreased lactate production and increased pyruvate and ATP levels in cancer cells. Moreover, knocking down TAB182 reverses radiation-induced metabolic changes, such as radioresistant-related lactate production. TAB182 is necessary for activating LDHA transcription by affecting transcription factors SP1 and c-MYC; its knockdown attenuates the upregulation of LDHA by radiation, subsequently suppressing lactate production. Targeted suppression of TAB182 significantly enhances the sensitivity of murine xenograft tumors to radiotherapy. These findings advance our understanding of glycolytic metabolism regulation in response to ionizing radiation, which may offer significant implications for developing new strategies to overcome tumor radioresistance.


Assuntos
L-Lactato Desidrogenase , Proteômica , Humanos , Animais , Camundongos , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/metabolismo , Linhagem Celular Tumoral , Glicólise , Lactatos , Tolerância a Radiação/genética
2.
BMC Endocr Disord ; 24(1): 30, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443895

RESUMO

BACKGROUND: The association between the triglyceride-glucose (TyG) index and arterial stiffness in individuals with normoglycaemia remains unclear. We aimed to evaluate the relationship between the TyG index and arterial stiffness in Japanese individuals with normoglycaemia, providing additional evidence for predicting early arterial stiffness. METHODS: This study included 15,453 adults who participated in the NAGALA Physical Examination Project of the Murakami Memorial Hospital in Gifu, Japan, from 2004 to 2015. Data on clinical demographic characteristics and serum biomarker levels were collected. The TyG index was calculated from the logarithmic transformation of fasting triglycerides multiplied by fasting glucose, and arterial stiffness was measured using the estimated pulse wave velocity calculated based on age and mean blood pressure. The association between the TyG index and arterial stiffness was analysed using a logistic regression model. RESULTS: The prevalence of arterial stiffness was 3.2% (500/15,453). After adjusting for all covariates, the TyG index was positively associated with arterial stiffness as a continuous variable (adjusted odds ratio (OR) = 1.86; 95% Confidence Interval = 1.45-2.39; P<0.001). Using the quartile as the cutoff point, a regression analysis was performed for arterial stiffness when the TyG index was converted into a categorical variable. After adjusting for all covariates, the OR showed an upward trend; the trend test was P<0.001. Subgroup analysis revealed a positive association between the TyG index and arterial stiffness in Japanese individuals with normoglycaemia and different characteristics. CONCLUSION: The TyG index in Japanese individuals with normoglycaemia is significantly correlated with arterial stiffness, and the TyG index may be a predictor of early arterial stiffness.


Assuntos
Análise de Onda de Pulso , Rigidez Vascular , Adulto , Humanos , Estudos Transversais , Japão/epidemiologia , Glucose , Triglicerídeos
3.
Respir Physiol Neurobiol ; 323: 104237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38354845

RESUMO

The airway epithelium serves as a critical interface with the external environment, making it vulnerable to various external stimuli. Airway epithelial stress acts as a catalyst for the onset of numerous pulmonary and systemic diseases. Our previous studies have highlighted the impact of acute stress stimuli, especially bacterial lipopolysaccharide (LPS) and hydrogen peroxide (H2O2), on the continuous elevation of intracellular chloride concentration ([Cl-]i). However, the precise mechanism behind this [Cl-]i elevation and the consequential effects of such stress on the injury repair function of airway epithelial cells remain unclear. Our findings indicate that H2O2 induces an elevation in [Cl-]i by modulating the expression of CF transmembrane conductance regulator (CFTR) and Ca-activated transmembrane protein 16 A (TMEM16A) in airway epithelial cells (BEAS-2B), whereas LPS achieves this solely through CFTR. Subsequently, the elevated [Cl-]i level facilitated the injury repair process of airway epithelial cells by activating focal adhesion kinase (FAK). In summary, the [Cl-]i-FAK axis appears to play a promoting effect on the injury repair process triggered by stress stimulation. Furthermore, our findings suggest that abnormalities in the [Cl-]i-FAK signaling axis may play a crucial role in the pathogenesis of chronic airway diseases. Therefore, controlling the structure and function of airway epithelial barriers through the modulation of [Cl-]i holds promising prospects for future applications in managing and treating such conditions.


Assuntos
Cloretos , Regulador de Condutância Transmembrana em Fibrose Cística , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Cloretos/metabolismo , Cloretos/farmacologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Células Epiteliais/metabolismo
4.
Biomed Opt Express ; 15(2): 594-607, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38404336

RESUMO

In this work, based on Fe3O4@AuNPs and double amplified signal Off-On strategy, a simple and sensitive SERS microfluidic chip was constructed to detect microRNA associated with non-small cell lung cancer (NSCLC). Fe3O4@AuNPs have two advantages of SERS enhanced and magnetic adsorption, the introduction of microfluidic chip can realize double amplification of SERS signal. First, the binding of complementary ssDNA and hpDNA moved the Raman signaling molecule away from Fe3O4@AuNPs, at which point the signal was turned off. Second, in the presence of the target microRNA, they were captured by complementary ssDNA and bound to them. HpDNA restored the hairpin conformation, the Raman signaling molecule moved closer to Fe3O4@AuNPs. At this time, the signal was turned on and strong Raman signal was generated. And last, through the magnetic component of SERS microfluidic chip, Fe3O4@AuNPs could be enriched to realize the secondary enhancement of SERS signal. In this way, the proposed SERS microfluidic chip can detect microRNA with high sensitivity and specificity. The corresponding detection of limit (LOD) for miR-21 versus miR-125b was 6.38 aM and 7.94 aM, respectively. This SERS microfluidic chip was promising in the field of early detection of NSCLC.

5.
Cytokine Growth Factor Rev ; 75: 1-11, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061920

RESUMO

In contemporary oncology, radiation therapy and immunotherapy stand as critical treatments, each with distinct mechanisms and outcomes. Radiation therapy, a key player in cancer management, targets cancer cells by damaging their DNA with ionizing radiation. Its effectiveness is heightened when used alongside other treatments like surgery and chemotherapy. Employing varied radiation types like X-rays, gamma rays, and proton beams, this approach aims to minimize damage to healthy tissue. However, it is not without risks, including potential damage to surrounding normal cells and side effects ranging from skin inflammation to serious long-term complications. Conversely, immunotherapy marks a revolutionary step in cancer treatment, leveraging the body's immune system to target and destroy cancer cells. It manipulates the immune system's specificity and memory, offering a versatile approach either alone or in combination with other treatments. Immunotherapy is known for its targeted action, long-lasting responses, and fewer side effects compared to traditional therapies. The interaction between radiation therapy and immunotherapy is intricate, with potential for both synergistic and antagonistic effects. Their combined use can be more effective than either treatment alone, but careful consideration of timing and sequence is essential. This review explores the impact of various radiation therapy regimens on immunotherapy, focusing on changes in the immune microenvironment, immune protein expression, and epigenetic factors, emphasizing the need for personalized treatment strategies and ongoing research to enhance the efficacy of these combined therapies in cancer care.


Assuntos
Neoplasias , Humanos , Terapia Combinada , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
6.
Sci Total Environ ; 913: 169606, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159744

RESUMO

Nanoplastic particles are pervasive environmental contaminants with potential health risks, while mouse intestinal organoids provide accurate in vitro models for studying these interactions. Metabolomics, especially through LC-MS, enables detailed cellular response studies, and there's a novel interest in comparing metabolic changes across nanoparticle species using gut organoids. This study used a mouse intestinal organoid combined with cell model to explore the differences in metabolites and toxicity mechanisms induced by exposure to three nanoplastics (PS, PTFE, and PMMA). The results showed that PS, PTFE, and PMMA exposure reduced mitochondrial membrane potential, intracellular ROS accumulation and oxidative stress, and inhibited the AKT/mTOR signaling pathway. Non-targeted metabolomics results confirmed that three types of nanoplastic particles regulate cellular status by regulating fatty acid metabolism, nucleotide metabolism, necroptosis and autophagy pathways. More importantly, these representative metabolites were further validated in model groups after mouse intestinal organoids and HCT116 cells were exposed to the respective NPs, indicating that organoid metabolomics results can be used to effectively predict toxicity. Untargeted metabolomics is sensitive enough to detect subtle metabolomic changes when functional cellular analysis shows no significant differences. Overall, our study reveals the underlying metabolic mechanism of NPs-induced intestinal organoid toxicity and provides new insights into the possible adverse consequences of NPs.


Assuntos
Microplásticos , Nanopartículas , Animais , Camundongos , Polimetil Metacrilato , Metabolômica/métodos , Nanopartículas/toxicidade , Organoides , Politetrafluoretileno , Poliestirenos/toxicidade
7.
Exp Mol Med ; 55(12): 2596-2607, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38036735

RESUMO

Exposure to nanomicroplastics (nano-MPs) can induce lung damage. The gut microbiota is a critical modulator of the gut-lung axis. However, the mechanisms underlying these interactions have not been elucidated. This study explored the role of lactate, a key metabolite of the microbiota, in the development of lung damage induced by nano-MPs (LDMP). After 28 days of exposure to nano-MPs (50-100 nm), mice mainly exhibited damage to the lungs and intestinal mucosa and dysbiosis of the gut microbiota. Lactate accumulation was observed in the lungs, intestines and serum and was strongly associated with the imbalance in lactic acid bacteria in the gut. Furthermore, no lactate accumulation was observed in germ-free mice, while the depletion of the gut microbiota using a cocktail of antibiotics produced similar results, suggesting that lactate accumulation in the lungs may have been due to changes in the gut microbiota components. Mechanistically, elevated lactate triggers activation of the HIF1a/PTBP1 pathway, exacerbating nano-MP-induced lung damage through modulation of the epithelial-mesenchymal transition (EMT). Conversely, mice with conditional knockout of Ptbp1 in the lungs (Ptbp1flfl) and PTBP1-knockout (PTBP1-KO) human bronchial epithelial (HBE) cells showed reversal of the effects of lactate through modulation of the HIF1a/PTBP1 signaling pathway. These findings indicate that lactate is a potential target for preventing and treating LDMP.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Ácido Láctico/metabolismo , Mucosa Intestinal/metabolismo , Pulmão , Camundongos Endogâmicos C57BL , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/farmacologia
8.
BMC Public Health ; 23(1): 2087, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880652

RESUMO

BACKGROUND: The association between muscle defects and hypertension is well-established. However, the absence of pertinent and uncomplicated clinical indicators presents a challenge. Relative muscle strength (RMS) may offer a viable indicator. This study aimed to explore the association between RMS and hypertension. METHODS: A total of 12,720 individuals aged ≥ 45 years from the 2011 wave of the China Health and Retirement Longitudinal Study (CHARLS) were included. Grip strength was recorded and appendicular skeletal muscle mass (ASM) was estimated using a validated mathematical formula. The RMS was calculated as the ratio of grip strength to ASM. Hypertension was determined based on previous diagnosis, history of hypertension medication use, and current blood pressure. Logistic regression models were employed to investigate the relationship between RMS and hypertension. RESULTS: The prevalence of hypertension was 41.7% (5,307/12,720 patients). RMS was negatively correlated with hypertension with an OR (95% CI) of 0.68 (0.59-0.79) for males, 0.81 (0.73-0.90) for females, and 0.78 (0.72-0.85) for the entire population after adjusting for related covariates including age, education, marital history, smoking history, drinking history, diabetes, hyperlipidemia, and obesity. The trend test showed a linear association among males, females, or the entire population. Stratified analysis showed a consistent negative correlation between RMS and hypertension. CONCLUSIONS: Higher RMS is an independent protective factor against hypertension and efforts to promote RMS may be beneficial for the prevention and management of hypertension.


Assuntos
População do Leste Asiático , Hipertensão , Masculino , Pessoa de Meia-Idade , Feminino , Humanos , Adulto , Idoso , Estudos Longitudinais , Hipertensão/epidemiologia , Força Muscular , Obesidade/epidemiologia , China/epidemiologia , Força da Mão
9.
J Adv Res ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37541584

RESUMO

BACKGROUND: p53 wild-type lung cancer cells can develop radiation resistance. Circular RNA (circRNA) consists of a family of transcripts with exclusive structures. circRNA is critical in tumorigenesis and is a potential biomarker or therapeutic target. It is uncertain how circRNA expression and functions are regulated post-radiation in p53 wild-type cancer cells. METHODS: A549 or H1299 cells were divided into p53-wt and p53-KO groups by CRISPR/Cas9; both groups were subjected to 4 Gy ionizing radiation (IR: p53-wt-IR and p53-KO-IR). RNA-seq, CCK8, cell cycle, and other functional and mechanism experiments were performed in vivo. p53 gene knockout mice were generated to test the cell results in vitro. RESULTS: circRNAs were found in differential groups. circRNA_0006420 (IRSense) was upregulated in p53-wt cells but had the same expression level as p53-KO cells after radiation, indicating that p53 silencing prevents its upregulation after IR. In the presence of p53, upregulated IRSense post-radiation induces G2/M arrest by regulating DNA damage repair (DDR) pathway-related proteins. Meanwhile, upregulated IRSense post-radiation aggravates the radiation-induced epithelial-mesenchymal transition (EMT). Interestingly, in the presence of p53, it promotes IRSense/HUR/PTBP1 complex formation resulting in the promotion of the radiation-induced EMT. Moreover, c-Jun regulates the upregulation of p53 transcription after radiation treatment. For these lung cancer cells with p53, upregulated IRSense aggravates lung cancer cell proliferation and increases radiation resistance by interacting with HUR (ElAV-like protein 1) and PTBP1 (polypyrimidine tract-binding protein 1) in the nucleus. CONCLUSIONS: Lung cancer cells retaining p53 may upregulate circRNA_0006420 (IRSense) expression post radiation to form an IRSense/HUR/PTBP1 complex leading to radiotherapy resistance. This study furthers our understanding of the roles of circRNA in regulating the effect of radiotherapy and provides novel therapeutic avenues for effective clinical lung cancer therapies.

10.
Mol Ther ; 31(9): 2633-2650, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37482682

RESUMO

Chromatin remodeling and N6-methyladenosine (m6A) modification are two critical layers in controlling gene expression and DNA damage signaling in most eukaryotic bioprocesses. Here, we report that poly(ADP-ribose) polymerase 1 (PARP1) controls the chromatin accessibility of METTL3 to regulate its transcription and subsequent m6A methylation of poly(A)+ RNA in response to DNA damage induced by radiation. The transcription factors nuclear factor I-C (NFIC) and TATA binding protein (TBP) are dependent on PARP1 to access the METTL3 promoter to activate METTL3 transcription. Upon irradiation or PARP1 inhibitor treatment, PARP1 disassociated from METTL3 promoter chromatin, which resulted in attenuated accessibility of NFIC and TBP and, consequently, suppressed METTL3 expression and RNA m6A methylation. Lysophosphatidic Acid Receptor 5 (LPAR5) mRNA was identified as a target of METTL3, and m6A methylation was located at A1881. The level of m6A methylation of LPAR5 significantly decreased, along with METTL3 depression, in cells after irradiation or PARP1 inhibition. Mutation of the LPAR5 A1881 locus in its 3' UTR results in loss of m6A methylation and, consequently, decreased stability of LPAR5 mRNA. METTL3-targeted small-molecule inhibitors depress murine xenograft tumor growth and exhibit a synergistic effect with radiotherapy in vivo. These findings advance our comprehensive understanding of PARP-related biological roles, which may have implications for developing valuable therapeutic strategies for PARP1 inhibitors in oncology.


Assuntos
Cromatina , Neoplasias , Humanos , Camundongos , Animais , Cromatina/genética , Metilação , RNA/metabolismo , Fatores de Transcrição/genética , RNA Mensageiro/genética , Neoplasias/genética , Neoplasias/radioterapia , Metiltransferases/genética , Metiltransferases/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
11.
CNS Neurosci Ther ; 29(10): 2986-2997, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37122154

RESUMO

AIMS: Machine learning-based identification of key variables and prediction of postoperative delirium in patients with extensive burns. METHODS: Five hundred and eighteen patients with extensive burns who underwent surgery were included and randomly divided into a training set, a validation set, and a testing set. Multifactorial logistic regression analysis was used to screen for significant variables. Nine prediction models were constructed in the training and validation sets (80% of dataset). The testing set (20% of dataset) was used to further evaluate the model. The area under the receiver operating curve (AUROC) was used to compare model performance. SHapley Additive exPlanations (SHAP) was used to interpret the best one and to externally validate it in another large tertiary hospital. RESULTS: Seven variables were used in the development of nine prediction models: physical restraint, diabetes, sex, preoperative hemoglobin, acute physiological and chronic health assessment, time in the Burn Intensive Care Unit and total body surface area. Random Forest (RF) outperformed the other eight models in terms of predictive performance (ROC:84.00%) When external validation was performed, RF performed well (accuracy: 77.12%, sensitivity: 67.74% and specificity: 80.46%). CONCLUSION: The first machine learning-based delirium prediction model for patients with extensive burns was successfully developed and validated. High-risk patients for delirium can be effectively identified and targeted interventions can be made to reduce the incidence of delirium.


Assuntos
Delírio , Unidades de Terapia Intensiva , Humanos , Aprendizado de Máquina , Algoritmo Florestas Aleatórias , Delírio/diagnóstico , Delírio/etiologia
12.
Nutrition ; 111: 112027, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37087943

RESUMO

OBJECTIVES: Burn patients are reportedly prone to complications, such as skeletal muscle wasting, anemia, and slow wound healing, during treatment, due to disease and metabolic depletion, which affect prognosis. Nutritional support is essential in treating burns and can significantly improve patient survival and reduce complications such as infection. This study aimed to perform a bibliometric analysis of the existing literature on nutritional support for burns and to explore possible future research trends. METHODS: The literature related to nutritional support for burns from 1983 to 2022 was searched on Web of Science. The included literature was used for bibliometric analysis using VOSviewer and CiteSpace software. RESULTS: There were 260 publications on nutritional support for burns. The United States contributes significantly to research in this area. The United States has the highest number of publications (n = 119) and citations (n = 4424). Nutrition support was the keyword with strongest burst intensity. A diet of ≥ 60% carbohydrates and 12% to 15% fat is suitable for burn patients, but the optimal ratios have not been fully determined. CONCLUSIONS: An optimal nutritional support program is essential for treating burn patients. Individualized nutritional support programs are the trend in this field. At present, more rigorous multicenter prospective studies with large samples are needed to explore the optimal ratios for specific dietary programs, especially macronutrients, to achieve satisfactory nutritional support and improve patient prognosis.


Assuntos
Queimaduras , Apoio Nutricional , Humanos , Estudos Prospectivos , Bibliometria , Queimaduras/complicações , Queimaduras/terapia , Atrofia Muscular
13.
J Immunother Cancer ; 11(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36759013

RESUMO

BACKGROUND: The standard neoadjuvant treatments in patients with esophageal squamous cell carcinoma (ESCC) still have either poor safety or efficacy. Better therapies are needed in China. METHODS: This was an open-label, single-arm, phase 2 trial. Patients with potentially resectable ESCC (cT1b-3, Nany, M0 or T4a, N0-1, or M0) received preoperative intravenous sintilimab plus triplet chemotherapy (liposomal paclitaxel, cisplatin, and S-1) every 3 weeks for two cycles. The primary endpoints were safety and surgical feasibility; the secondary endpoint was major pathological response (MPR) rate. Genomic biomarkers (genetic mutations, tumor mutational burden (TMB), circulating tumor DNA status and immune microenvironment) in baseline tumor samples were investigated. RESULTS: All 30 patients completed two cycles of neoadjuvant treatment and underwent surgical resection. Grade 3-4 treatment-related adverse events (TRAEs) occurred in 36.7% (11/30) of patients. The most frequent TRAEs were decreased white cell count (76.7%), anemia (76.7%), and decreased neutrophil count (73.3%). All TRAEs were hematological toxicities; none caused ≥30 days surgical delay. The MPR and pathological complete response (pCR) rates were 50.0% (15/30; 95% CI 33.2 to 66.9) and 20.0% (6/30; 95% CI 9.5 to 37.3), respectively. Patients with higher TMB and more clonal mutations were more likely to respond. ERBB2 alterations and ctDNA high-releaser status have a negative correlation with neoadjuvant ICI response. No significant difference was observed between therapeutic response and tumor immune microenvironment. CONCLUSIONS: Neoadjuvant sintilimab plus platinum-based triplet chemotherapy appeared safe and feasible, did not delay surgery and induced a pCR rate of 20.0% in patients with potentially resectable ESCC. TRIAL REGISTRATION NUMBER: NCT03946969.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/terapia , Terapia Neoadjuvante/efeitos adversos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Resultado do Tratamento , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Microambiente Tumoral
14.
Biol Direct ; 18(1): 2, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635762

RESUMO

Radiation-induced pulmonary fibrosis (RIPF) is a major side effect experienced for patients with thoracic cancers after radiotherapy. RIPF is poor prognosis and limited therapeutic options available in clinic. Lactobacillus rhamnosus GG (LGG) is advantaged and widely used for health promotion. However. Whether LGG is applicable for prevention of RIPF and relative underlying mechanism is poorly understood. Here, we reported a unique comprehensive analysis of the impact of LGG and its' derived lncRNA SNHG17 on radiation-induced epithelial-mesenchymal transition (EMT) in vitro and RIPF in vivo. As revealed by high-throughput sequencing, SNHG17 expression was decreased by LGG treatment in A549 cells post radiation and markedly attenuated the radiation-induced EMT progression (p < 0.01). SNHG17 overexpression correlated with poor overall survival in patients with lung cancer. Mechanistically, SNHG17 can stabilize PTBP1 expression through binding to its 3'UTR, whereas the activated PTBP1 can bind with the NICD part of Notch1 to upregulate Notch1 expression and aggravated EMT and lung fibrosis post radiation. However, SNHG17 knockdown inhibited PTBP1 and Notch1 expression and produced the opposite results. Notably, A549 cells treated with LGG also promoted cell apoptosis and increased cell G2/M arrest post radiation. Mice of RIPF treated with LGG decreased SNHG17 expression and attenuated lung fibrosis. Altogether, these data reveal that modulation of radiation-induced EMT and lung fibrosis by treatment with LGG associates with a decrease in SNHG17 expression and the inhibition of SNHG17/PTBP1/Nothch1 axis. Collectively, our results indicate that LGG exerts protective effects in RIPF and SNHG17 holds a potential marker of RIPF recovery in patients with thoracic cancers.


Assuntos
Lacticaseibacillus rhamnosus , Fibrose Pulmonar , RNA Longo não Codificante , Animais , Camundongos , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Fibrose Pulmonar/genética , Fibrose Pulmonar/tratamento farmacológico , Células A549 , Humanos , RNA Longo não Codificante/genética
15.
Chemosphere ; 311(Pt 1): 137041, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36330977

RESUMO

Developing broad-spectrum light reactions, effective charge separation, and easily recoverable photocatalysts were considered cost-effective pollution remediation methods. The ZnFe2O4/BC/ZnO composite was prepared to achieve these objectives, where biochar (BC) was used as a conductive channel and ZnFe2O4 as a magnetic substance. Among them, the 0.6-ZBO composite performed the best, with photocatalytic removal of tetracycline (TC) reaching 85.6%. The photocatalytic degradation rated constant of 0.6-ZBO composite was 23.36 × 10-3 min-1, which was 7.6, 4.1, and 2.5 times higher than that of ZnFe2O4/BC, ZnO, and ZnFe2O4/ZnO samples, respectively. According to several characterization data, it was demonstrated that successful Z-scheme heterojunctions were constructed between ZnFe2O4 and ZnO. The 0.6-ZBO complex increased the range of light absorption and strengthened the separation of electron-hole pairs, thus improving the redox ability of the complex. In the different water matrices, the stability of 0.6-ZBO was excellent and its ability to remove TC decreased slightly to about 11% after 5 cycles. This work provided a valuable approach to design a novel and efficient system for degrading organic pollutants in wastewater using magnetic biochar.


Assuntos
Óxido de Zinco , Catálise , Tetraciclina , Antibacterianos , Luz
16.
Mikrochim Acta ; 190(1): 19, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512092

RESUMO

Rod-like graphite carbon nitride@MnO2 (R-g-C3N5@MnO2) heterostructure was prepared by in situ self-anchored growth of MnO2 nanosheet on the surface of R-g-C3N5. The synthesized R-g-C3N5@MnO2 heterostructure as photoactive material exhibited excellent photoelectrochemical (PEC) performance, and the prepared heterostructure-aptamer probe displayed sensitive PEC response to cTnI. Therefore, the PEC method was developed to detect cTnI based on the R-g-C3N5@MnO2 heterostructure. It was found that the linear response to cTnI was in the range 0.001-30 ng/mL under optimized conditions, and the detection limit of the proposed sensor was 0.3 pg/mL. The PEC method displays stable photocurrent response up to 8 cycles and exhibited outstanding selectivity and sensitivity. The PEC method was successfully applied to detect cTnI in serum samples. The recoveries of cTnI detection in serums reach 95.5-104%, and the relative standard deviations range from 3.20 to 4.45%.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Eletroquímicas/métodos , Troponina I , Técnicas Biossensoriais/métodos , Limite de Detecção , Compostos de Manganês , Óxidos
17.
Front Psychiatry ; 13: 989218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405924

RESUMO

Delirium, an acute brain dysfunction, is a common and serious complication in burn patients. The occurrence of delirium increases the difficulty of patient treatment, is associated with various adverse outcomes, and increases the burden on the patient's family. Many scholars have studied the factors that cause delirium, but the causes, pathogenesis, and treatment of delirium in burn patients have not been fully revealed. There is no effective pharmacological treatment for delirium, but active preventive measures can effectively reduce the incidence of delirium in burn patients. Therefore, it is necessary to study the relevant factors affecting the occurrence of delirium in burn patients. This study was conducted on December 20, 2021 by searching the PubMed database for a narrative review of published studies. The search strategy included keywords related to "burns," "delirium," and "risk factors." We reviewed the characteristics of delirium occurrence in burn patients and various delirium assessment tools, and summarized the risk factors for the development of delirium in burn patients in terms of personal, clinical, and environmental factors, and we found that although many risk factors act on the development of delirium in burn patients, some of them, such as clinical and environmental factors, are modifiable, suggesting that we can estimate the exposure of burn patients to risk factors by assessing their likelihood of delirium occurring and to make targeted interventions that provide a theoretical basis for the prevention and treatment of burn delirium.

18.
Medicine (Baltimore) ; 101(42): e30362, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36281188

RESUMO

It remains challenging to determine the regions of metastasis to lymph nodes during operation for clinical stage I non-small cell lung cancer (NSCLC). This study aimed to establish intraoperative mathematical models with nomograms for predicting the hilar-intrapulmonary node metastasis (HNM) and the mediastinal node metastasis (MNM) in patients with clinical stage I NSCLC. The clinicopathological variables of 585 patients in a derivation cohort who underwent thoracoscopic lobectomy with complete lymph node dissection were retrospectively analyzed for their association with the HNM or the MNM. After analyzing the variables, we developed multivariable logistic models with nomograms to estimate the risk of lymph node metastasis in different regions. The predictive efficacy was then validated in a validation cohort of 418 patients. It was confirmed that carcinoembryonic antigen (>5.75 ng/mL), CYFRA211 (>2.85 ng/mL), the maximum diameter of tumor (>2.75 cm), tumor differentiation (grade III), bronchial mucosa and cartilage invasion, and vascular invasion were predictors of HNM, and carcinoembryonic antigen (>8.25 ng/mL), CYFRA211 (>2.95 ng/mL), the maximum diameter of tumor (>2.75 cm), tumor differentiation (grade III), bronchial mucosa and cartilage invasion, vascular invasion, and visceral pleural invasion were predictors of MNM. The validation of the prediction models based on the above results demonstrated good discriminatory power. Our predictive models are helpful in the decision-making process of specific therapeutic strategies for the regional lymph node metastasis in patients with clinical stage I NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Metástase Linfática/patologia , Antígeno Carcinoembrionário , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Estadiamento de Neoplasias , Linfonodos/cirurgia , Linfonodos/patologia , Nomogramas
19.
Curr Res Food Sci ; 5: 1685-1700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204709

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a progressive disease of the liver covering a range of conditions from hepatic steatosis to liver fibrosis. NAFLD could be induced by High-fat-diet(HFD). Ionizing radiation is widely used in medical diagnosis and therapy as well as is a common risk factor in occupational environment. Whether the exposure of various dose of radiation has effects on HFD-induced NAFLD remains unclear. Here, we reported that radiation exposure promoted HFD-induced NAFLD in a dose-response manner. Furthermore, the gut microbiota composition had significant difference among mice with or without radiation treatment. Specifically, the Bacteroidetes/Firmicutes ratio, the abundance of A. muciniphila, Butyricococcus, and Clostridiaceae decreased significantly in the mice with co-exposure of high dose of radiation and HFD treatment. A fecal transplantation trial (FMT) further verified the role of gut microbiota in the regulation of the liver response to co-exposure of high dose of radiation and HFD treatment. Notably, the gut microbiome analysis showed plasma lithocholic acid (LCA) level increased in the mice with co-exposure of high dose of radiation and HFD treatment. Following antibiotic and probiotic treatments there was a significantly decreased LCA bile acid concentration and subsequent promotion of INSR/PI3K/Akt insulin signaling in the liver tissues. Our results demonstrate that the co-exposure of radiation and HFD aggravates the HFD-induced NAFLD through gut microbiota-LCA-INSR axis. Probiotics supplementation is a potential way to protect against co-exposure of radiation and HFD-induced liver damage. Meanwhile, our study provide a new insight that population with potential HFD-induced damage should pay more attention on preventing from liver damage while exposing radiation.

20.
Front Med (Lausanne) ; 9: 971393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186821

RESUMO

Background: Sepsis is one of the most common complications in burn patients and causes high morbidity, especially in those with severe burns. Nevertheless, there are no formal criteria for diagnosing and treating burn sepsis. Therefore, this bibliometric analysis is applied to reveal research trends in this field and predicts its possible hot spots. Methods: We screened relevant literature on burn sepsis that met the inclusion criteria of the Web of Sciences (WOS) database and analyzed publication trends and research hot spots in related fields using VOSviewer software. Results: From 1981 to 2022, we screened 2,486 documents that met the requirements and analyzed them bibliometrically. The American scholar Herndon DN had a much higher h-index [47] than other authors. Most published, cited, and h-indexed publications are from the USA (Np: 1193, Nc: 42154, H: 98). The second most publishing country is China, but the second most cited and h-indexed country is Germany. Burns also outperforms other journals in this field (Np: 376, Nc: 8019, H: 46). "Biomarkers" is a newly emerging keyword (cluster "clinical research," APY was 2018.16), and clinically relevant research in burn sepsis maybe a future research trend. Conclusions: Sepsis in burn patients has unique pathophysiological characteristics and the general diagnostic criteria for sepsis lack specificity. Consequently, we must establish a database and construct an intelligent predictive model to help achieve a more individualized and precise early diagnosis and treatment of burn sepsis. This may also be an important development direction for future research in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...